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MODEL VALIDATION
FOR PREDICTIVE EXPOSURE ASSESSMENTS

1 INTRODUCTION AND BACKGROUND

The construction and use of mathematical models are essential in
predicting the possible consequences of releasing chemicals, some of
which may be quite novel, into new environments. Substantial costs, and
substantial damages to human health and the environment, may attach to
the regulatory decisions that are informed and thus guided by the
predictions derived from a model. The risk of making a wrong decision
will be strongly dependent on the reliability of these predictions, in
just the same way as it would be dependent upon the reliability of an
observing instrument used for a site survey prior to a construction
project. There is a profound concern, therefore, with the need to
establish the validity of a given model in performing a specified task,
usually of making predictions of future behavior.

The difficulty of meeting this need of model validation tends to
increase as the degree of extrapolation from observed conditions in the
past increases. And not surprisingly, the greater the is degree of
extrapolation so the greater the necessity of relying on a model for
the conduct of an assessment.

The difficulty of quantifying a model's validity also increases with
the complexity and size of the model. The peer group of analysts
capable of scrutinising the composition of a more complex and
comprehensive model will tend to be smaller; and the possibility of
significant uncertainty (or error) attaching to the model's many
constituent parameters (coefficients) will increase. Such uncertainty
may well lead to ambiguity in the predictions made by the model about
the nature of a system's behavior in the future (Beck and Halfon,
1991). Many combinations of values for the parameters may give equally
plausible matches of the model's behavior with the historical
observations, but with no clear indication of which of these
combinations should be used for making predictions. Yet in the absence
of empirical observations of past behavior, which indeed in many
instances are by definition not possible, there is a natural tendency
to rely on the complexity of a model as a form of insurance against the
unknown. For if everything of conceivable relevance has been included
in a model, how can its predictions possibly be wrong? Or perhaps
conversely, there is a tendency to avoid the use of simpler models,
which may make no reference to the internal mechanisms believed to
govern the behavior of the system.

In spite of much attention over the years, most notably in the field of
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geologic repositories for the disposal of high-level nuclear waste
(Davis et al, 1990), the problem of model validation seems to remain as
intractable as ever. From time to time frustration with this
intractability rises to the fore, most recently in the literature on
modelling the movement of contaminants through groundwater systems
(Konikow and Bredehoeft, 1992; Oreskes et al, 1994). Indeed, it is as
though this intractability is reflected in the many labels that have
been assigned to what is meant by the process of "model validation",
without yet a definitive procedure having emerged for its
implementation.

The purpose of this document is to define a set of procedures for model
validation in carrying out exposure assessments. These procedures are
based both on the concept of peer-group review and evaluation and on
quantitative (usually statistical) measures of validity. They
complement the EPA Guidelines for Exposure Assessment (EPA, 1991).

1.1 Requirements for Model Validation Within EPA

Assessments that estimate, in part, the exposures that motivate and
assist regulatory or policy decisions within EPA are often challenged
to demonstrate their "scientific validity".  Predictive exposure
assessment modeling is increasingly common as modeling technology
advances and is essential for many Agency risk assessments. 
Inevitably, and appropriately, model validation is a major concern
among both the exposure assessment community and Agency officials that
factor such assessments into management or policy decisions.  The
issue, and problems, of model validation are widely recognized, are
active research areas among almost all scientific disciplines, and are
specifically targeted as vital in environmental predictions used to
assist risk assessments.  Perhaps the most recent external expression
of needs for model validation within EPA can be found in "Science and
Judgement in Risk Assessment" (NRC,1994). Interestingly, the authors of
this report avoid the term "model validation" per se in favor of the
term "model evaluation".  In describing the use of air-quality models,
for example,  "Evaluation of the air-quality models and other
components of air-pollutant risk assessment is intended to determine
accuracy for providing the details required in a given application and
to provide confidence in the results".  Absent detailed knowledge of
the deliberation leading to the choice of these words, one reasonable
interpretation is that "validation" defies a concise definition and
further that model accuracy and one's confidence in modeling results
are closely related to problem specific situations.  The present report
largely comports with these interpretations although an operational
definition of model validation is a major objective.    

Standard E 978 - 84 of the American Society for Testing and Materials
(ASTM) sets out standard practice for "Evaluating Environmental Fate
Models of Chemicals" (ASTM, 1984). Its purpose is to provide
"procedures and criteria for development, deployment, and use of
mathematical models ... in predictive risk assessments". It is thus
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highly relevant to the present note and extensive reference to its
terminology, in particular, will be made below. The scope of the
standard is further qualified thus (ASTM, 1984):

It does not specify models themselves, but it establishes
minimum criteria for distinguishing acceptable models from
those which may be incomplete, untested, or inappropriate
for intended purposes.

Again, this is of obvious, central relevance to the present discussion.

More recently (in January, 1989) the Environmental Engineering
Committee (EEC) of the EPA's Science Advisory Board prepared a
Resolution on Use of Mathematical Models by EPA for Regulatory
Assessment and Decision-Making (US EPA, 1989). Among other items, this
Resolution states that: "[t]here is a need for models used in
regulatory applications to be confirmed with laboratory and field data"
(US EPA, 1989). This is amplified by a more complete statement, a key
part of which is the following:

The stepwise procedure of checking the numerical consistency
of a model, followed by field calibration, validation and a
posteriori evaluation should be an established protocol for
environmental quality models in all media ....

The EEC was concerned, in particular, that there should be a
consistency of approach across the Agency in demonstrating the validity
of a model.

These same themes, of both the ASTM standard and the EEC Resolution,
are reiterated in the National Research Council's (NRC) authoritative
publication on "Ground Water Models: Scientific and Regulatory
Applications" (NRC, 1989). Looking towards the future, the document
concluded that government agencies and private industry should be aware
of the need for, and benefits of, additional research in, inter alia,
model validation.

The EPA's current Guidelines on Exposure Assessment express the role of
models and their validation thus (EPA, 1991):

Environmental fate models calculate estimated concentrations
in media, that in turn are linked to the concentrations at
the point of contact. The use of estimated properties or
rates adds to the uncertainty in the exposure concentration
estimate. When assessors use these methods to estimate
exposures, uncertainties attributable to the model and the
validation status of the model must be clearly discussed in
the uncertainty section ....

The EPA's Agency Task Force on Environmental Regulatory Modeling Final
Report (EPA, 1993), described, inter alia, model use  acceptability
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criteria as part of its goal to further the use and value of
environmental modeling in EPA's regulatory programs.  The Task Force
analysis does not place an emphasis on validation.   
Clearly, a carefully expressed protocol for model validation in
predictive exposure assessments is now timely.  Given the general
imperative for model validation, the current and varied set of
definitions and concepts, and the authors' perspective on predictive
exposure assessment modeling within EPA, the problem remains to
describe model validation more precisely and operationally in a way
that can be implemented as steps in the exposure assessment process. 
As will be developed and elaborated in later sections, the focus of
this effort is sharpened by two important constraints:

(i) The validity of a model cannot be established without specification
of the task the model is required to perform.  That is, model
validation is essentially problem specific and at the present time no
model-specific or universally applicable model validation process
exists.

(ii) The greater concern for model validation lies with the use of
models in the generic screening process (in assessing scenarios for a
wide array of situations that could occur), and in other "data poor"
situations rather than in site-specific cases where local data are
available or can (will) be collected. This is not to say that model
validation expectations for intensive, site-specific modeling should be
relaxed.  Rather, it is to say that there exists a reasonably well-
developed history of model validation in the site-specific context and
that the greater need lies in cases for which application of the
classical approaches is not an option.   

1.2 Organization of the Document

Model validation is not an easy concept to define in precise terms.
Section 2 reviews previous definitions of the problem and proceeds to
develop a definition of particular relevance to predictive exposure
assessments. Section 3 presents in outline the methods and procedural
steps of model validation and defines the role of validation in the
overall process of developing a model. It is not intended that this
document should serve as a detailed instructional guide for model
validation, although Section 3 is accompanied by an Appendix providing
some supporting mathematical material. Section 4 discusses the
significant role of expert opinion and qualitative judgement in
determining the validation status of a model. Finally, Section 5 sets
out the forms of evidence that will be necessary in implementing a
protocol for judging whether a model can be said to have been
validated.

2 CONCEPTS AND DEFINITIONS

The primary difficulty in setting out a protocol -- or set of
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procedures -- for model validation is the great variety of meanings
that has been attached to the word "validation" itself (Versar Inc,
1988; Donigian and Rao, 1990).  The noticeable use of other terms for
the process by which one gains confidence in modeling applications
found in recent discussions of modeling in EPA is testimony to this
problem. 

Within the terms of the ASTM standard E 978 - 84, validation is defined
as:

Comparison of model results with numerical data
independently derived from experience or observations of the
environment.

This is rather restrictive, since it places a strong emphasis on
reference to "observations of the environment", which will not be
available for novel chemicals supposed to be moving through previously
unencountered environments (at least for the given chemicals under
consideration). Nevertheless, the word "experience" in the above, with
its undertones of subjective, expert knowledge, opens up the potential
for a significantly broader interpretation, as will become apparent.

In essence, however, the above definition is "retrospective" in its
outlook, since there can only be observation of the past behaviour of
the system. It is not radically different in intent from the more
contemporary preferences of Konikow and Bredehoeft (1992), who state:

What is usually done in testing the predictive capability of
a model is best characterized as calibration or history
matching: it is only a limited demonstration of the
reliability of the model. We believe the terms validation
and verification have little or no place in ground-water
science; these terms lead to a false impression of model
capability. More meaningful descriptors of the process
include model testing, model evaluation, model calibration,
sensitivity testing, benchmarking, history matching, and
parameter estimation. Use of these terms will help to shift
emphasis towards understanding complex hydrogeological
systems and away from building false confidence into the
model predictions.

The plethora of phrases used collectively to describe the process of
validation is immediately apparent. It is as though the inability to
demonstrate unequivocally that validation (or invalidation) has been
completed has forced upon us a groping for better words to describe
what can be done (which is yet not quite what needs to be done).
Hassanizadeh and Carrera (1992) have expressed much the same
sentiments:

The difference between the different definitions [of
validation] is not a matter of semantics; it is a question
of the perception behind validation. The general concern
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about a proper definition of [the] aim and scope of
validation is a legitimate one, given the many
misconceptions about 'validated models'. Many individuals do
not realize that a 'validated model' does not necessarily
yield accurate predictions of reality even if it does so
once. A theory which has overcome many tests is not ensured
of not failing in the next one; theories can be proven
wrong, but they cannot be proven right. Thus validation must
not be considered as obtaining a label; one should not seek
a 'yes or no' answer to model validation.

Further support for the inappropriateness of a simple binary judgement
on the validity of a model can be found in the evaluation of models of
air quality, notably those for predicting regional acidic depositions
(NAPAP, 1990).

Another alternative definition, as follows, can be found in the report
by Versar Inc (1988):

In a general sense, the [validation] of a [model package]
refers to the overall process of defining the range of
circumstances or situations for which the package's behavior
and predictions are satisfactory. However, from the point of
view of a user of a potential model package, the diversity
of conditions for which the package has been shown to be
valid is irrelevant. The potential user is interested only
in whether the model will correctly predict system response
for the situation of interest to him/her.

This is restated in a glossary of terms provided in the same report
(Versar Inc, 1988):

[Validation is] [t]he process of defining the range of
problems or situations for which the behavior and
predictions of a [model package] are satisfactory; the
iterative expansion of the known applicable range of a
[model package] by documenting new site-specific
[evaluations] of its performance. A model may be adequately
validated for use in a particular situation. However, it is
not possible to state whether a model will be valid for all
possible situations.

We are, in fact, attempting the impossible, for it will be apparent
that any statement about validation necessitates extrapolation from
past experience. It is highly unlikely that the next purpose for which
the model is to be used will be identical in all respects to one or
more of the contexts in which it has been applied in the past. Unless
one believes that history repeats itself -- exactly -- the task of
prediction must almost always embody some element that is not only
unknown but also unknowable as seen from the present. That a literal
interpretation of the task of validation would be an impossible task
has been clearly stated by Oreskes et al (1994), whose contribution to
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this particular (philosophical) aspect of the debate is likely to stand
as the closing statement for some considerable time to come.

A slightly different definition of model validation is therefore
required for predictive exposure assessments; and this in turn requires
examination of the philosophical foundations of what "validation" is
believed (and agreed) to be about.

2.1 Philosophical and Conceptual Basis

In a wide-ranging review across several fields of modelling Lewandowski
(1982) has made the following salutory observations:

It is commonly agreed between modeling methodologists that
model validation is one of the most important stages in the
model building process. ... However, at the present stage of
research there are almost no suggestions concerning concrete
methods of validation. Practically all authors only discuss
definitions of validation - not methods. The number of
papers dealing with methods of model validation is also
rather limited.

The reason for this gap between methodological consciousness
and the practice of model building seems to be obvious - the
discussion stays at too high a level of abstraction. In
general, all authors consider "model" as a description of
reality, and ... it is only possible to generate rather
general statements, frequently true but without operational
meaning.

The following consideration of the philosophical underpinnings of model
validation will seek to avoid the difficulties implied by Lewandowski's
observations.

2.1.1 Caswell's contribution

Caswell's study of the problem of validation (in 1976) is generally
recognized as one of the first, and most important, treatments of the
subject (Caswell, 1976). Burns, who has himself made a significant
contribution to the subject (in his paper on "Validation of Exposure
Models: the Role of Conceptual Verification, Sensitivity Analysis, and
Alternative Hypotheses"; Burns, 1983), expressly acknowledges his
indebtedness to Caswell.

The key point Caswell makes in his paper is that a judgement about the
validity of a model cannot be made in the absence of a specified
purpose for the model. He identifies two such purposes:

(i) the use of models for the development of insights into, and
understanding of, the fundamental mechanisms underlying the
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behavior of a system;

(ii) their use for the prediction of future behavior, or of
behavior under conditions not previously encountered.

Other purposes can of course be specified, in particular, the
assessment of compliance with, or violation of, a regulatory standard.
Most authors, like Caswell, have attached great importance to the
purpose of the model in establishing its validity.

Increasing understanding of the fundamental mechanisms of behavior will
not be the primary purpose of a model in predictive exposure
assessments, but it is by no means entirely irrelevant to this more
practically oriented objective. For whatever protocol is specified for
the validation of a model to be used in a regulatory context, it would
be unacceptable for such a protocol to discourage improvements in basic
understanding.

Put simply, a model may be viewed as a complex assembly of several, if
not many, constituent hypotheses, and in this respect assessment of the
strengths and weaknesses of each constituent hypothesis is as important
as the more familiar problem of examining the validity of the model as
a whole. Precisely how one goes about this task of corroborating and
refuting the constituent hypotheses of the model is now widely agreed,
in philosophical terms, to have been amply and adequately stated in
Popper's papers on the scientific method and the evolution of knowledge
(Popper, 1959, 1963; as illustrated by Caswell, 1976; Young, 1978; and
Reckhow and Chapra, 1983; Konikow and Bredehoeft, 1992; Ababou et al,
1992). This does not imply, however, that application of these
philosophical principles to the interpretation of field data is a fully
resolved matter; it is not (Beck, 1987). Moreover, the pursuit of
improved understanding is self-evidently an unending quest. Yet
practical decisions, in sharp contrast, cannot be deferred for ever.

Of special relevance to the more pragmatic and -- for this discussion -
- the principal of the two purposes of model validation, is the
following quotation from Caswell (1976, p317):

Models of systems are systems themselves, the interacting
components of which are mathematical variables and
expressions. They are, moreover, man-made systems .... The
construction of such artificial systems is a design problem,
and the process of design is in essence a search for
agreement between properties of the artificial system and a
set of demands placed on it by the designer. It is
impossible to evaluate the success or failure of a design
attempt without specification of these demands, the task
environment in which the artificial system is to operate.
Validation of a model is precisely such an evaluation ....

When improved understanding is not the objective, Caswell argues that
the intrinsic truth, or realism, of the model is not of interest.



9

Pragmatically, one can get by with various approximations, which are
very probably false or unrealistic, as long as one is aware of the
domain of applicability of the model, i.e. the areas in which it is
known to work successfully. To illustrate this Caswell quotes a model
of the global human population. The model gives a seemingly good
prediction of this quantity in the year 2000, yet also predicts a
population infinite in number shortly after 2026. The problem becomes
one of establishing the boundaries of the domain of the model's
applicability. Ultimately, Caswell reduces this latter to tests of the
degree to which there is coincidence between the outputs of the model
and a set of observations (on which basis, incidentally, the population
model quoted above performs very well). Thus, somewhat
unsatisfactorily, specification of a practical test of the model's
validity has been returned to the rather restrictive definition
requiring observations of actual behavior.

The significant point, however, is the view that validation is
essentially a problem of design.

2.1.2 Validation as a design task

For the situation where the analysis of actual in situ observations is
not possible, as, for example, in a screening-level analysis in
exposure assessment, we are seeking to design an instrument (the model)
that will meet certain specifications. Like Caswell's example of the
model for forecasting the world's human population, there are
situations in predictive exposure assessments where -- out of a
constructive pragmatism -- one would accept the use of a model that is
known, a priori, not to be wholly valid scientifically.

When a novel substance is proposed for release into the environment it
is possible to assume that it will experience no "forces" acting on its
distribution and presence in the receiving environment other than those
of transport, i.e., advection and dispersion. The substance is assumed
to be entirely "conservative". If the predicted exposure is found to be
acceptable, under this strong assumption with its inherent maximum
degree of safety, no further argument about the decision to release the
substance should be necessary. If it is conversely unacceptable, then
the proponent of the substance's manufacture and release is under the
constructive obligation to furnish more detailed information about this
substance's chemical or microbial degradability in the given
environment.

In this example, the conservative model has proved to be a valid
instrument in fulfilling the tasks of:

(i) establishing the risk of exceeding a given level of
acceptable exposure;

(ii) identifying the need for more detailed information.
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Such tasks are entirely consistent with the roles defined for models in
the general field of exposure assessment, as stated by the EPA's
Guidelines (EPA, 1991):

A primary consideration in selecting a model is whether to
perform a screening study or to perform a detailed study.

The value of the screening-level analysis is that it is
simple to perform and may indicate that no significant
contamination problem exists. Screening-level models are
frequently used to get a first approximation of the
concentrations that may be present. Often these models use
very conservative assumptions; that is, they tend to over-
predict concentrations or exposures. If the results of a
conservative screening procedure indicate that predicted
concentrations or exposures are less than some predetermined
"no concern" level, then a more detailed analysis is
probably not necessary. If the screening estimates are above
that level, refinement of the assumptions or a more
sophisticated model are necessary in further iterations for
a more realistic estimate.

Screening-level models also help the user conceptualize the
physical system, identify important processes, and locate
available data. The assumptions used in the preliminary
analysis should represent conservative conditions, such that
the predicted results over-estimate potential conditions
limiting false negatives. If the limited field measurements
or screening analyses indicate that a contamination problem
may exist, then a detailed modeling study may be useful.

Similarly, in "Science and Judgement in Risk Assessment" (NRC,1994), a
recommendation is made with respect to one particular model that..."The
underlying assumption that the calculated exposure estimate is a
conservative one should be reaffirmed; if not, alternative models whose
performance has been demonstrated to be superior should be used in
exposure assessment".  Further the report concludes that ..." EPA
should particularly ensure that, although exposure estimates are as
accurate as possible, the exposure to the surrounding population is not
underestimated".  These statements expressly identify a model design
that not only accommodates the existence of bias but encourages it as a
means to accomplish certain tasks.  In this case a model valid for the
task specification is knowingly wrong in at least some scientific
dimension.

The task of the models in the above example and citation was not to
provide as faithful a prediction as possible of the "true" behavior of
the substance if released into the environment. The model's design, as
an instrument of prediction, should be capable of successive refinement
and adaptation against this task specification.
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2.1.3 Composition and performance of the model

The way in which the validity of a model is judged is intuitively based
on two features:

(i) The composition of the model, i.e. the manner in which its
constituent hypotheses are assembled, with then some measure
of the consensus (or disagreement) that attaches either to
each constituent hypothesis, or to the model as a whole, or
both. This can be regarded as an essentially internal
measure of validity; judgement about the model is being made
by reference to its intrinsic mechanisms, which determine
how the input (causative) stimuli are related to the output
responses. In principle, any such judgement ought to reflect
the generic properties of the model, irrespective of the
current task to which it has been assigned. In reality,
however, it must inevitably reflect the accumulating
experience of the model (and its earlier
successful/unsuccessful performance) up to, but not
including, the present task (whatever this may be).

(ii) The performance of the model in terms of being a valid
instrument for undertaking the current task assigned to it.
In contrast, this can be regarded as an essentially external
measure of validity, in the sense that it will engage some
comparison of data derived from the model with data (or
conditions) deduced from sources of knowledge utterly
independent of the specific model whose validity is to be
established. Judgement in this case is being made by
reference to a set of required output responses, in which
terms the current task will most usually be cast. The
independent "sources of knowledge" used to define the task
may themselves nevertheless be in the form of alternative
(competing, candidate) models. In principle, and in
practice, performance validity is a task-specific property
and will be of general relevance only inasmuch as the
specific task in fact encompasses features common to all
predictive exposure assessments.

The less familiar concept of compositional validity, or internal
validity, requires further elaboration.

Under one label or another, it has in fact been in use for some time
(Mihram, 1973; Miller et al, 1976). The report by Versar Inc (1988)
defines "face validity" as follows:

Using subjective opinions regarding the surface, or initial,
impression of the model's realism.

Hermann (1967), in an early paper on gaming models for the simulation
of international politics, has used the same phrase (face validity) to
describe a situation in which the model structure is explained to
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various experts, and judged by them to be intuitively reasonable. For
the present discussion compositional validity (internal validity) will
be taken to approximate closely this earlier concept of "face
validity".

There remains the question of how compositional validity is to be
gauged. Given the likelihood that the composition of a model as a whole
will evolve over the years (and differ from one developer to another),
whereas the mathematical expression of the model's many constituent
hypotheses is rather less likely to change rapidly, the natural
preference would be for compositional validity to be measured on the
more consistent basis of constituent hypotheses. Such a preference is
effectively expressed in the numerical results of the work of EPA's
Exposure Modeling Work Group, as reported in Donigian and Rao (1990).
The presence, absence, or modification of each constituent hypothesis
will also best reflect the evolution of the model over the years.
However, it would still be desirable to have a procedure for
aggregating these constituent measures into some overall "value" for
the compositional validity of the model as a whole.

An obvious quantitative choice for expressing the validity of
constituent hypotheses would be the uncertainty attaching to each of
the model's parameter (coefficient) estimates. Corroborating evidence
from past applications will (in a Bayesian sense) "narrow" the bands of
uncertainty attaching to each parameter, and evidence of refutation
will effect the reverse (if not occasion the restructuring of the
model). In this same spirit, both from a statistical (Reckhow et al,
1990) and a philosophical perspective (Oreskes et al, 1994),
compositional validity may be closely associated with the notion of
model confirmation, qualified as follows (Oreskes et al, 1994):

The greater the number and diversity of confirming
observations, the more probable it is that the
conceptualization embodied in the model is not flawed. But
confirming observations do not demonstrate the veracity of a
model or hypothesis, they only support its probability.

Thus, in Figure 1(a) the compositional validity of Model (1) might be
determined at the outset from subjective (expert) introspection and
experience; that of Model (2) on the basis of both this initial
experience and interpretation of Data Set (1); that of Model (3) on the
basis of interpreting both Data Sets (1) and (2) and, now less so, the
initial subjective judgement; and so on.

Fundamentally, however, judgement about compositional validity would
seem to be well suited to some process of peer group review (as
discussed in Section 4).

2.1.4 Prior and posterior performance validity

Let us assume that performance validity can be gauged in quantitative
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terms by the residual errors of mismatch between the model's output
responses and the task specification (or observed data set, if
available). This is generally the most familiar definition of model
validity.

As with the discussion of compositional validity, subjective
introspection and experience must be used to make any judgement about
the performance validity of the model at the outset, should this be so
required (Figure 1(b)). Thereafter, a comparison between the outputs of
Model (1) and the observed Data Set (1) may be used for determination
of the performance validity. In the event that any properties of Model
(1) are adjusted on the basis of this comparison -- such as typically
the values of the model coefficients (or parameters) during calibration
-- and the errors of mismatch recomputed, we may refer to this more
refined concept as posterior performance validity. Here "posterior"
signifies after some preceding interpretation of the reasons for the
mismatch of the model's responses with the given data set and based on
an adjusted set of residual errors of mismatch. Where no such
adjustments are made, as in the cases of Data Sets (2) and (3) in
Figure 1(b), we may refer to the complementary concept of prior
performance validity, signalling thus the qualifying state of being
before any interpretation and adjustments in the sense intended above.

As will be discussed in Section 3, it is the property of prior
performance validity that is especially important in predictive
exposure assessments. Indeed, it may be argued that no judgement about
a model's validity should be based on a posterior performance statistic
or, at the very least, such judgement should necessarily be declared as
inferior to what would ideally be required.

2.1.5 Behavior under novel conditions

There is a paradox. The greater the degree of extrapolation from past
conditions, so the greater must be the reliance on a model as the
instrument of prediction; hence, the greater the desirability of being
able to quantify the validity (or reliability) of the model, yet the
greater is the degree of difficulty in doing just this.

We are strongly accustomed to the idea of performance being specified
in terms of a time-series of observations of the model's state (or
output) variables. This is a highly restrictive outlook, however, as
admirably demonstrated in the seminal work of Hornberger, Spear, and
Young (Young et al, 1978; Hornberger and Spear, 1980; Spear and
Hornberger, 1980). Behavior, i.e. performance, can be specified in a
variety of other ways, including on the basis of expert opinion. In
fact, once this notion is cast aside -- of judging a model's
performance on the basis of historical observations alone -- ways round
the difficulties of validating a model for performance under novel
conditions become apparent.

The analyst has immense freedom to be creative in defining the task, or
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purpose, of the model. For example, this might be as follows:

(i) To fit the historical data as closely as possible (the
traditional purpose of calibration);

(ii) To fit a second set of historical data as closely as
possible, without altering the model's parameter values (a
traditional definition of model validation);

(iii) To locate a sample of randomly generated values for the
model's parameters that enable the model outputs to match
certain crude constraints on what is defined (not actually
observed) to be an acceptable statement of past behavior
(the task addressed by Young et al, 1978);

(iv) To locate a sample of randomly generated values for the
model's parameters that enable the model outputs to match
certain crude constraints on what is defined to be radically
different behavior of the system in the future (the task
addressed in Beck, 1991);

(v) To locate a sample of randomly generated values for the
model's parameters that result in an exposure above or below
a given level (including "no concern", extreme or "high-end"
exposures) or within a given confidence band around a
specified probability of occurrence (the primary task of
exposure assessments).

Of these, (iii), (iv), and (v) reflect evaluation of the model's
performance back from the external definition of the task onto the
internal composition of the model. For in essence the Hornberger-Spear-
Young (HSY) algorithm (as discussed in Beck (1987), for example) is the
identification of those model parameters that are crucial to
discriminating a match from a mismatch of the model's outputs with the
reference behavior, and (by reflection) those parameters that are
redundant to this discriminating function.

The questions of interest may therefore become:

(i) What is it about the model, i.e., which constituent
parameter(s) is it, that enables the model to generate
behavior that will be radically different in the future?

(ii) What is it about the model, i.e., which constituent
parameter(s) is it, that enables the model to perform its
task; indeed, what is the balance between key and redundant
parameters in performance of the specified task?

(iii) What is it about the model, i.e., which constituent
parameter(s) is it, that enables the model to generate "no
concern" or "high-end" exposures?
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Having thus been liberated from the constraints of developing a test
that must have access to in situ field observations, and having thus a
procedure for distinguishing key parameters in the model from those
that are redundant to the task at hand, one could begin to move towards
the notion of a valid model being one that is maximally relevant to its
task. Here "relevance" could be defined as the ratio of (key/redundant)
parameters in model, a property notably independent of the size of the
model.

Moreover, if the performance of the task is dependent upon many key
parameters that are believed to be relatively well, this gives the
analyst greater confidence in judging the model to be valid (albeit a
qualitative judgement) than a result in which performance is dependent
on just a few key parameters that are believed not to be known very
well.

However, these are issues for the future; they are subjects for further
research.

2.2 Summary

The validity of a model cannot be established without specification of
the task the model is required to perform. In predictive exposure
assessments the greater concern for model validation lies with the use
of models in the generic screening process (in assessing scenarios for
a wide array of situations that could occur), rather than in site-
specific cases where local data either are available or can be
collected. For the latter, validation can be addressed using
"classical" measures of the performance of the model against the
familiar definition of desired behavior as a set of time-series
observations. The former is essentially a design task. The "scenarios
for a wide variety of situations that could occur" will have to be
specified a priori, as indeed they are in areas such as assessment of
the performance of geologic repositories for the disposal of high-level
nuclear waste (Davis et al, 1990). Otherwise the task of design has no
meaning. They will almost certainly not be quantifiable in the terms of
time-series of observations; they may have to be expressed in less
restrictive terms, for example, a numerical encoding of expert opinion,
perhaps derived from the manipulation of a belief network (Varis,
1994).

For predictive exposure assessments, then, particular weight will need
to be given to determining validation status in terms of (i)
compositional validity, and (ii) prior performance validity, in which
the task (performance) specification is not necessarily cast in terms
of a set of historical observations.

3 PROCEDURE AND METHODS
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The problem of validation is simply this: will the given model perform
its task reliably, i.e. at minimum risk, where risk is quantified as
some function of the probability of an undesirable outcome and the
damage resulting from this outcome? Alternatively, we might ask: which
-- among several candidate models -- is the most reliable instrument
for performing the given task?

Being in a position to answer these questions is the culmination of the
entire preceding process of developing the model. The task of
validation is served both by this process, which we shall now define,
and by any supplementary analysis of uncertainty (with the latter
subsuming herein the analysis of sensitivity). Further clarification
and definition of the role of some of the more commonly used
statistical methods can be found in the Appendix.

3.1 Procedure of Model Development

The ASTM standard E 978 - 84 defines a model as follows:

Model (ASTM E 978 - 84)

An assembly of concepts in the form of a mathematical
equation that portrays understanding of a natural
phenomenon.

It further defines computer code (computer program) as:

Computer code (ASTM E 978 - 84)

The assembly of numerical techniques, bookkeeping, and
control language that represents the model from acceptance
of input data and instructions to delivery of output.

The term algorithm is then defined as:

Algorithm (ASTM E 978 - 84)

The numerical technique embodied in the computer code.

These three introductory concepts set out merely the common "language"
of model-building.

The process of model development proper divides into two parts: that
which can be undertaken without reference to any field (or laboratory)
data, i.e., that which is a function solely of the knowledge and
imagination of the analyst; and that which must be undertaken with
reference to some quantitative definition of the behavior of the system
to which the model refers. It is clearly important that such a
"quantitative definition of the behavior of the system" should be as
independent as possible of the "knowledge and imagination of the
analyst" that will have gone into the composition of the model.
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3.1.1 Synthesis

As already noted, a model may be viewed as a complex assembly of
several, if not many, constituent hypotheses. The developer of the
model may be quite eclectic in the sources of knowledge that are tapped
in the expression of this assembly in mathematical form (for example,
the results of previous models, microcosm experiments, laboratory
toxicity tests, and field studies). The process is essentially one of
synthesis, impressively illustrated by Scavia (1980) in his development
of a model for the ecology of Lake Ontario. This first of the two
stages of developing the model is completed by the act of (code)
verification, defined thus:

(Code) verification (ASTM E 978 - 84)

Examination of the numerical technique in the computer code
to ascertain that it truly represents the conceptual model
and that there are no inherent numerical problems with
obtaining a solution.

Certain minor variations on this terminology are possible, notably in
the use of the phrase generic model, defined by its authors as follows
(Konikow and Bredehoeft, 1992):

When a numerical algorithm is implemented in a computer code
to solve one or more partial differential equations, the
resulting computer code can be considered a generic model.

We may consider that the model is therefore constructed and
compositional validity established. For irrespective of whether any
subsequent calibration or analysis of uncertainty is to be undertaken,
consensus (or disagreement) on the constituent hypotheses assembled
together in the model, and their relative strengths and weaknesses, can
be gauged, stated, and possibly quantified as an aggregate measure of
the validity of the model as a whole. As already noted, this is a
subject for peer group review of the model, and is discussed fully in
Section 4.

3.1.2 Analysis

It is the purpose of the second phase of development to adjust the
settings in this instrument of prediction in order to make it both
usable and accurate. It may not be "usable" immediately upon
construction simply because some of the coefficients (or parameters) in
its many mathematical relationships have not been assigned values; it
may not be "accurate" because incorrect values have been assigned to
these parameters. There is then a need for calibration of the model:

Calibration (ASTM E 978 - 84)
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A test of a model with known input and output information
that is used to adjust or estimate factors for which data
are not available.

Since the "factors" referred to here are the model's coefficients, or
parameters, calibration is frequently referred to as a matter of
parameter estimation.

The model may prove at this stage to be quite inadequate, if not plain
wrong in the expression of some of its relationships, i.e., its
constituent hypotheses. Its hypotheses may have been refuted by this
test against the external behaviour definition, and no amount of
adjustment of the internal parameters appearing in these relationships
may compensate for its basic inadequacy. The encoded model may thus
suffer from what has variously been called structural error (Beck,
1987), conceptual errors (Konikow and Bredehoeft, 1992) or
uncertainties in the conceptual model (Usunoff et al, 1992), or model
error (Luis and McLaughlin, 1992). A broader meaning and remit can thus
be attached to the process of calibration: that it is a search for the
source and reason of such error (Beck, 1987), although the simple
definition given above will be quite sufficient for present purposes.

At the end of the procedure the model will exist as a specific object.
Indeed, since by definition calibration involves at least one test of
the model's performance, through a comparison of data derived from the
model with data from the prototype system, there will also be evidence
of its posterior performance validity, i.e., evidence of its
reliability as an instrument of prediction. However, the status of this
evidence in coming to a view on the crucial issue of the model's prior
performance validity will be weakened by the degree to which the final
values of the measures of agreement (or fit), after calibration, are
conditioned upon successive adjustments of the model's parameter
values. It is the purpose of calibration to seek the best possible
match between the behaviors of the model and the system. Providing
there is a sufficient number of parameters in the model there are in
principle sufficient degrees of freedom to adjust the behavior of the
model so that its match with the behavior of the system may become
arbitrarily close. This, however, will provide little insight into how
the model will perform under conditions not previously encountered.

3.2 Validation

After calibration, then, the process of model development will yield a
set of relationships, a numerical solution procedure, and a set of
values for all the internal parameters of the model. This will be
entirely sufficient for application of the model in making the
predictions that will comprise the test of the model's prior
performance validity, providing that no further adjustments of the
internal settings of the instrument are incorporated. This, the
comparison of the model's results with data (or conditions) deduced
from facts and sources of knowledge utterly independent of those used
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in composing the model, is the centerpiece of what the ASTM standard
defines as "validation".

In almost all the cases considered hitherto in the literature in situ
field observations have been assumed to be available for the purposes
of assessing prior performance validity, as clearly reflected in the
supplementary discussion of Appendix I. However, for the reasons set
out in Section 2, such observations do not have to be an indispensable
prerequisite for this assessment.

The assessment proceeds as follows, with four distinct components.

(i) The raw "data"

Some measure of the correspondence between the performance of the model
and the performance embodied in the current task specification is to be
computed, ultimately to inform the judgement about the model's
validity. Simply, the sequences of model outputs, observed (system)
output responses, and the differences between these two sets of
sequences, can be considered collectively as the raw "data" available
for manipulation in the validation process.

(ii) Summarizing "properties" of the raw data

There may well be great benefit in computing certain summarizing
"properties" of these raw data. Attributes of their information content
can thereby be expressed concisely, with a degree of discrimination
against the spurious influences of random errors and events captured in
the raw data. Such "properties" include (statistical) distribution
functions, the moments of these distributions (e.g., their means), and
the sets of coefficients appearing in correlation functions and
regression relationships. In statistical terms, the computation of
these "properties" from the raw data would be referred to as estimation
(Reckhow et al, 1990).

(iii) The "decision"

Both the raw data and their summarizing properties constitute relevant
information for making the central "decision": of whether to accept or
reject the model as a valid instrument of prediction (under conditions
that will normally be expected not to be identical with conditions
observed in the past). The fact that the summarizing properties have
been (objectively) computed does not deny the relevance of the original
raw data, albeit subjectively interpreted, to the making of the
"decision". Equally, when several summarizing properties have been
objectively computed, which is often the case, their collective use in
informing the "decision" will almost inevitably involve some subjective
balancing of the relative importance of each constituent property (Luis
and McLaughlin, 1992; Konikow and Bredehoeft, 1992). There is but a
single decision; yet several summarizing properties may be interpreted
collectively to inform it. And like all decisions, it would be best
made in the light of as much relevant information as possible and will
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be subject to a particular decision rule, or perspective, of the
decision-maker.

(iv) The decision "statistics"

Making a choice among several courses of action requires a rule
expressing our preferences with regard to the probability of an event
occurring and the costs (benefits) associated with the combination of
the chosen course of action and the outcome of the (random) event. In
the process of validation the choice is binary -- to accept or reject
the model as a valid instrument of prediction -- and the outcome of the
random event is also binary -- in the event the model may prove to be a
"true" or a "false" representation of reality, with differing
(monetary) consequences for each of the four possible combinations of
the course of action and event outcome. In the light of these
consequences consistent, if not automatic, rules determining the course
of action deemed most preferable can be adopted. They do not have to
be, for the analyst can process subjectively the information relevant
to the decision in order to choose the course of action, without
expressly declaring any such rules. However, an important form of more
detached such rules for the decision are those guided by the
computation of certain "statistics" (e.g., chi-squared, Student's t,
Kolmogorov-Smirnov, and others), and these rules are what would be
familiarly known as statistical hypothesis testing (Reckhow et al,
1990; Luis and McLaughlin, 1992). The rule is encapsulated in the
degree to which the value of some "statistic" computed from the raw
data differs from a reference value, with an element of risk (of making
a wrong decision) embodied in the tolerance allowed for in what
constitutes an acceptable difference. In practice, the tendency has
been to work with a null hypothesis of "no significant difference
between the model and the observations", and to err on the side of not
rejecting a valid model.

Where further relevant sets of data are available, further tests of the
model's performance may be conducted. If the evidence from all such
assessments has been mustered, evaluation of the model's validity --
both compositional and performance, and spanning all the tests -- will
have been completed. In other words, its reliability will have been
determined, as an instrument of prediction up to, but not including,
the current task specification. Its reliability vis a vis this current
task can only be gauged by the degree to which we believe the features
of the current task approximate features encountered in the past; and
even this belief (or expectation) may prove, in the event, to be
surprisingly false. In this respect, then, what is understood herein as
validation differs from the definitions given in Versar Inc (1988) and
quoted above. The difference may only be a matter of semantics, but we
would argue that "... the diversity of conditions for which the [model]
package has been shown to be valid ..." is not entirely "irrelevant";
there may be a degree of identity between some features of the current
task and those encountered in the past.

There appears to be no formal means of modifying any computed,
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quantitative measures of compositional and performance validities by
this expected "degree of similarity" between current and past task
specifications. A qualitative, expert (or peer group) opinion on the
subject, however, might be available; and undoubtedly the same
subjective approach would be needed for combining the quantitative
results of all the objective tests of model validity into a single
index of validation status. If such a single index were quantifiable
(and desirable), it almost goes without saying that a valid model
should score relatively highly according to this index.

3.3 Analysis of Uncertainty

Other forms of analysis, which may be regarded as part of the process
of developing the model, also serve the purpose of validation.

It is unreasonable to expect that no uncertainty will attach to a model
and the predictions it generates. There are two facets to the analysis
of such uncertainty, respectively reflections of the internal and
external facets of the model's composition and performance. They are
defined as follows:

Analysis of uncertainty

(i) Evaluation of the ranges (or distributions) of values that
can be assigned to the model's parameters, where evaluation may
be made, inter alia, on the basis of model calibration as a
function of the specified sources of uncertainty associated with
the data used for this test.

(ii) Evaluation of the ranges (or distributions) of values that
are associated with the predictions of the model's output
variables, as a function, inter alia, of the uncertainty in the
model's parameter values.

The former can be called upon in order to establish the model's
compositional validity, in terms of each constituent parameter in the
model. Such a measure will reflect the accumulating success (or
failure) in the performance of the model against any sets of data
employed in the development process. Its interpretation can be used to
amplify and qualify the expert opinions in a peer group review of the
model. The latter permits an alternative test of the model's prior
performance validity. The reliability of the model can be understood
simply as the "inverse", as it were, of the uncertainty of the
predictions. The test may be performed under the novel conditions of
the current task specification, by providing the scenarios for those
situations that could occur in releasing the contaminant, including
some quantitative measure of the (subjective) probability of occurrence
of a particular scenario.

The analysis of sensitivity is a simpler subset of the analysis of
uncertainty. It can be defined as:
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Sensitivity (ASTM E 978 - 84)

The degree to which the model result is affected by changes in a
selected input parameter.

The possibility that the value assigned to a model parameter is
erroneous is thereby acknowledged. However, the magnitude of this error
is not evaluated in an analysis of sensitivity. Rather it is assumed,
usually to be at a standard level of 1% or 10%, for example, of the
best estimated value of the given parameter; alternatively, the model's
performance might be tested at the mean, minimum and maximum values of
its various parameters. An analysis of the model's sensitivity reveals
nothing directly of the reliability of the model's predictions.
Indirectly, however, a model whose predictions differ greatly as a
consequence of minor changes to its parameter values is of suspect
reliability, especially if the "offending" parameters are either
entirely novel components of the model or known from previous
experience to be difficult to estimate accurately. This is similar to
the suspect reliability of a model identified as having just a few
(among its many) parameters that are crucial to satisfaction of the
task definition but not at all well known (as in the earlier discussion
of the concept of relevance).

Errors in the predictions of a model may derive from three sources:

(i) the estimated initial state of the system at the start of
the forecasting horizon;

(ii) the assumed patterns of future variations in the input
disturbances of the system (typically, such as
precipitation, solar radiation, and release rates of
contaminants);

(iii) the model, by which the actions of the inputs are
transcribed into the evolution of the system's output
response (typically, the resulting concentration of the
contaminant at a receptor point in some sector of the
environment).

Where a supplementary analysis of uncertainty is undertaken it implies
knowledge sufficient for the quantification of these sources of
uncertainty. There are several methods commonly used for such analyses:
(i) a first-order error analysis; (ii) Monte Carlo simulation, possibly
with a more efficient sampling scheme; and (iii) methods of response
surface analysis (Cox and Baybutt, 1981; Beck, 1987; and Iman and
Helton, 1988; Zimmerman et al, 1990). It may in addition be of interest
to establish which, among the various elements of the above sources of
uncertainty, contributes most to the resulting uncertainty of the
model's predictions. It would be inappropriate, for example, to condemn
a model as "invalid" if its predictions were found to be highly
uncertain, but with the major source of this uncertainty deriving from
inadequate knowledge of the input disturbances.
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In the case of uncertainty in the model, this can simply be assumed to
be reflected in the uncertainty associated with the model's parameters,
and an initial evaluation of their uncertainty may be sought in the
literature. Upper and lower bounds on the feasible ("realistic") values
of the model's parameters are normally available, and they may be used
to bracket the uncertainty in the relevant parameter. Rather less
straightforwardly, quantification of the model's uncertainty may be
achieved through more advanced forms of model calibration, although
this has rarely been practiced (Beck, 1987). Still less
straightforwardly, the model could be said to be uncertain in respect
of the mathematical expressions of its hypothetical relationships (in
which the parameters appear). This has been referred to as a structural
error in the model, and only in the work of van Straten and Keesman
(1991) is there evidence of any attempt to quantify it and its
consequences for prediction uncertainty.

3.4 Further Considerations

3.4.1 Articulation

One of the enduring problems of modelling is the question of
establishing the correct degree of complexity required of a model for a
particular purpose. Balancing the number of parameters in a model (a
measure of its "complexity") against the goodness of fit of that model
to a set of data (its "accuracy") is an equally enduring problem, as
already observed. Intuitively, a "good" model would contain relatively
few parameters yet be able to predict behavior accurately over a wide
range of conditions.

In the analysis of time-series using polynomial expressions (in the
backward shift operator) it is possible to develop criteria, such as
Akaike's Information Criterion (AIC; Akaike, 1974), that allow the
analyst to determine when, in effect, further improvement in fit is
being bought at the expense of over-parameterisation. If a model is
over-parameterised it has, in the light of the earlier discussion of
calibration, too many degrees of freedom. This freedom can be both a
benefit and a liability: a benefit in creating the capacity to predict
conditions not previously encountered; a liability in allowing the
false impression of a reliable model, able to match closely all the
spurious, chance quirks of past observed behavior.

Costanza and Sklar's (1975) contribution to the subject of model
validation (interpreted very broadly) is an attempt to find an AIC that
is applicable to nonlinear state-space models of the kind commonly used
in predictive exposure assessments (time-series models are not used for
such purposes). These authors propose a measure of the complexity of
the model in terms of its articulation (the number of parts, or
elements, into which it is divided), along the three dimensions of
ecological, temporal, and spatial resolution. Goodness of fit is gauged
by conventional measures, such as the coefficient of determination. The
"effectiveness" of the model is then defined as the product of these
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two measures of complexity and goodness of fit.

3.4.2 Control of user errors

What is considered a "good" (or valid) model from one perspective may
not be considered a "good" model from another perspective. In
particular, the position of the user of a model will be different from
that of its developer. In this respect Burns et al (1990) have made a
significant contribution in arguing a strong case in favor of re-
orienting the way in which risks associated with the acceptance or
rejection of a model (as an instrument of prediction) are controlled.
They have put it this way (Burns et al, 1990, pp 35/6):

Objective validations can be conducted only when the
criteria for validity are objectively specified. Because the
social consequences of accepting false models (inadequate
chemical safety regulations) are much more serious than the
consequences of rejecting true models (continued research
and validation studies), model validations should always be
phrased to test the null hypothesis that "the model is
invalid" ... until proven otherwise.

They have also introduced the relevant means of computing the minimum
number of sample observations required to ensure that the validity of
the model can be assessed (with confidence) at the chosen levels of
developer and user risks of a wrong judgement.

The procedure outlined earlier remains the same. Merely the orientation
of the null hypothesis in assessing the model's prior performance
validity is thereby changed. Such a change is clearly endorsed by Luis
and McLaughlin (1992), who state:

Decision errors can be classified as either Type I
(rejecting the hypothesis when it is true) or Type II
(accepting the hypothesis when it is false). If the test is
very stringent it will have a small Type II error and a
large Type I error (i.e. it will tend incorrectly to reject
good models).

and is further supported by the following definition of validation from
studies on evaluating the performance of regional acidic deposition
models (NAPAP, 1990):

Validation - the determination of the correctness of a model
with respect to the user's needs and requirements.

3.4.3 Capability index

It is customary for a single value of a state variable, as generated by
the model, to be examined for its coincidence with a single observation
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from the field of the same quantity (at a given time and location). In
assessing the validity of the model on this basis the objective is to
establish to what extent the model differs from the "truth", not the
inevitably error-corrupted observation of this (unknown) quantity. The
null hypothesis, for which evidence for the rejection or discrediting
thereof is sought, is commonly stated as "no significant difference
between the model and the truth".

In the extreme case of a perfect observing instrument, the field
observation is the truth. And since the model, by definition, can never
be a wholly truthful representation of reality, Parrish and Smith
(1990) have made the point that it would be very unlikely for the
model's prediction to be coincident with this observed truth. The model
would accordingly be rejected routinely as not valid. They question,
therefore, the underlying principle of a test of coincidence that
presumes the possibility of "equality" between the model and the truth.
They argue that validity should be established as a function of the
model's prediction lying within a bounded range of values for the
truth, for example, that it lies within a factor of two of the truth.
This moves the underlying principle from one of presumed equality to
one of presumed "inequality", in the sense of not greater than a
certain "distance" from the truth.

For practical purposes Parrish and Smith (1990) construct a test for
the validity of the model that rests upon there being an overlap
between the ranges of values computed for the two quantities: the
model's prediction, where the upper and lower bounds are computed
simply as division and multiplication of the nominal model estimate by
the chosen factor (e.g., two); and the "truth", as estimated from the
mean of the sample of field observations of the quantity, with the
addition or subtraction of an appropriate t statistic multiplied by the
standard error of the sample of observation. They present the results
of their test as a capability index (of prediction). This will assume
the value of one for any overlap between the two computed ranges, and
progressively more than one as the two ranges become distinct and
indeed further separated.

Lack of perfection can of course reside on both sides of the test of
coincidence: in the model's predictions as much as in the field
observations. The arguments of Parrish and Smith clearly spring from
considerations of the latter alone. Those of Burns et al (1990) and
Reckhow et al (1990) equally clearly acknowledge both sources of
uncertainty and their joint role, not merely in undermining, but in
perverting, the power of this test. The more uncertain the model, the
better able it is to withstand the conventionally directed test of
erring on the side of not rejecting a valid model; and it is this
problem that has stimulated in Burns et al (1990) the reorientation of
perspective in the control of such errors of judgement. In the extreme
case, the trivial prediction that all things are equally probable, the
truth is bound to be covered somewhere.

In the work of Reckhow et al (1990) there are common elements of
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concern shared with both Burns et al (1990) and Parrish and Smith
(1990). For in discussing the presumed "equality" between the model and
the truth, they observed that (Reckhow et al, 1990):

... the basic null hypothesis indicative of a good model -
H0, where the underlying distribution of predictions and the
underlying distribution of observations are identical - may
be accepted because the model provides a good fit to the
data or because the model and/or data are quite variable.

The latter is self-evidently misleading.

3.4.4 Adequacy and reliability

The distinctive contribution of Mankin et al (1977) was to introduce a
discussion of models, and their performance against observations of the
real world, in terms of Venn diagrams. They used these diagrams to
define the adequacy and reliability of a model, i.e.,

Adequacy = {No of agreements between model and
"experiments"}/{No of "experiments"}

Reliability = {No of agreements between model and
"experiments"}/{No of "model responses"}

Their paper does not include, however, a precise definition of what is
meant by an "experiment", or a "model response". For the present
purposes a single "experiment" will be taken to be a definition of the
required/observed behavior over a span of time, not a single
observation at a single instant in time (that this was probably the
intended usage of the term can be inferred from a closely related paper
published subsequently by the same authors; Cale et al, 1983).

Mankin et al (1977) then proceed to argue that the above two measures
may be used to discriminate a "better" from a "worse" model, and that
they may also be used for the purposes of experimental design
(interpreted in its broadest sense, and in a manner closely similar to
that of Burns et al, 1990). They adopt a conventional null hypothesis
(i.e., a test erring on the side of not rejecting a valid model) and
then use Bayes' rule to establish what minimum level of model adequacy
would be required for a further "experiment" (set of observations) to
yield a smaller risk (posterior probability) of rejecting a valid
model. In other words, for Bayes' rule to be employed the following
assumptions are made:

The prior:

is the (chosen) probability of rejecting a valid model before the
"experiment" (conventionally referred to as probability ").

The accuracy of the observing instrument (as gauged by the



27

probability of "correspondence" between the "model response" and
the "experiment"):

is the adequacy of the model.

The posterior:

is the revised probability of rejecting a valid model after the
"experiment" (which, to be of interest, should be less than ").

A relationship between model adequacy and the number of "experiments"
required to assess the validity of the model (with confidence), at a
specified level of risk of rejecting a valid model, can thus be
established.

3.4.5 Relevance

It is apparent that the definition of reliability, as introduced by
Mankin et al (1977), plays no part in their subsequent analysis of
experimental design. This is disappointing, because the concept is not
spurious and indeed has very strong similarities with the notions of
key and redundant model parameters implied by the Hornberger-Spear-
Young algorithm discussed earlier.

It has been said that assessing the prior performance validity of a
model need not depend upon the availability of time-series observations
of the model's output variables. The design task to be performed by the
model can be stated in less narrow terms: as a function of an expert
opinion on scenarios for future behavior that could occur (as in Davis
et al, 1990) translated, for example, through the use of a belief
network (Varis, 1994), into a "corridor" of acceptable ranges of values
through which the model's outputs must pass. Different combinations of
values for the parameterisation of the model can be generated at random
-- albeit guided by reasonable constraints on the degree to which each
constituent hypothesis is considered to be uncertain (this being
notably the compositional validity of the candidate model). The
resulting performance of the model for each of these trial
parameterisations may be deemed to have been a success or failure,
according to whether the (broadly stated) task is satisfied or not. And
the reliability of the model, in the terms introduced by Mankin et al
(1977), is then straightforwardly the ratio of the number of such
successes divided by the total number of trial experiments with the
model.

Furthermore, the search for a model that is maximally relevant to its
stated task (Section 2.1.5) would emerge from the same form of test as
having a high ratio of (key/redundant) parameters, where a key
parameter is one that is important in determining whether the model
succeeds or fails in its task, and a redundant parameter is one to
whose values such success or failure are indifferent.
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Both of these measures (i.e., of reliability and relevance) are in
principle independent of the size of the model, which is undoubtedly a
desirable feature. In fact, the notion of a model being best able to
perform its design task has been shifted away from some measure of
closeness of its performance to the externally specified design task
(in terms of model outputs) towards the properties of its internal
composition. This is not to say that such optimal fits are not
important. Rather, the benefit of developing these nascent concepts
would lie in having some other forms of statistic that depend on the
intrinsic composition of the model.

3.5 Closing Remarks

It is perhaps a symptom of the difficulty of the problem of model
validity that there are so many definitions of it. Unlike calibration,
whose definition is widely agreed and has remained consistent over the
years, the subject of validation continues to attract attempts at
quantitative expression of the natural language terms in which it is
discussed (for example, articulation, capability, adequacy,
reliability, desirability, and relevance).

In predictive exposure assessments, and in particular for screening-
level analyses, the classical definition of validation -- such as the
"comparison of model results with observations of the system's behavior
other than those used for calibration" -- is not wholly satisfactory.
Yet, except for the measures of compositional validity, no quantitative
substitute has yet been identified, although promising lines of
research are discernible.

If the requisite field data for the classical tests of validation are
available, however, the methods developed and illustrated by Burns et
al (1990), Reckhow et al (1990) and Parrish and Smith (1990) are
collectively those that should be applied as the current best practice.

4 PEER REVIEW

4.1 The goals of peer review

Peer review is an important element of modeling. Peer review goals for
models are no different from any other scientific investigation.  In
brief, the idea is to provide a sufficiently detailed description of
the completed work to enable others to thoroughly evaluate its merits
and to provide enough detail to enable others to reproduce, confirm, or
challenge the results.  Provision of this detail in written form in
discipline or problem-oriented journals is the most common, and
preferred procedure.  For any particular body of research, peer review
through a series of manuscript submissions, reviews, publications, and
subsequent additional research are events in the scientific method.  It
is this continuing process that is most important in improving



29

scientific understanding rather than any individual review (or
publication that reflects such a review).  This is not to say that
seminal and definitive articles do not exist, rather that realization
of the importance of the work and its adoption as a basis for further
work (and in some cases as a basis for government policy) most often
comes after additional work, reviews, and publications.     

4.2 Limitations of traditional peer review approaches as applied     
to modeling

The traditional peer review approach of publishing in appropriate
scientific journals remains a very desirable if not essential component
of model validation but may be inadequate as definitive evidence of
scientific rigor as models become more complex, expand the number and
extent of their constituent hypotheses, and are refined or redesigned
to accomplish new tasks.  Mackay (ES&T, 1988) was among the first to
articulate this problem as part of a lead editorial note.

"...environmental science and management rely increasingly
on complex models to describe, for example, the complex
behavior of chemicals in a multimedia environment, routes to
human exposure, spill damages, atmospheric dispersion in
complex terrain, or extensive ionic equilibria....How can we
ensure that such models are valid, free from mistakes, and
thus reliable tools in the hands of scientists and
managers?...Complex, computer-based models can play an
important role in environmental science, but we cannot
expect the existing review system to give them the scrutiny
they need and deserve.  Those who fund, develop, and
ultimately use models must be willing to seek, encourage,
and sponsor novel peer reviewing approaches to ensure the
scientific rigor of the published word, which is at the core
of scientific progress."

Mackay properly identified peer review as a requirement to establish
validity but he has also voiced that novel approaches are needed.  This
view, it could be said, reflects the advances in modeling research. 
Early in the development of computer-based models, publication of new
models was common and deemed appropriate as part of the scientific
debate on how to structure and design models, how to solve constituent
equations, how to identify and accommodate boundary conditions, or to
propose a specific model as an efficient and reliable tool to
accomplish certain tasks.  Now, peer publication is most often
restricted to model application studies and elaborations on model
refinements made to improve model performance, usually for a new task. 
The peer reviews attendant to such publications are an  important
source of evidence for demonstrating either the compositional validity
of the model or its performance in accomplishing a specific task. 

Models are most often described in detail only through the "gray"
literature.  The usual case is publication of reports under the
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procedures used by the sponsoring organization.  The EPA, NRC, USGS,
USDA, DoE are but a few government organizations that have and continue
to publish reports that describe models.  The extent that such
documents are carefully and extensively reviewed is variable, largely
unknown, and in many cases the agencies add disclaimers that qualify
(in some cases essentially disavow) their endorsement of the published
material.  The variable nature of these publications and the lack of
the traditional "discipline-oriented" imprimatur raises questions about
the peer review status of the model in question.  However, the
designation of "gray literature" or the attendant qualified
endorsements by the publishing organization does not diminish the
importance of such publications.  Because these documents may be the
only detailed description of the model, they serve as an absolutely
essential reference for the continuing peer review process cited in the
previous section.    

Mackay also questions whether the "published word" will ensure
scientific rigor in the case of models.  This is a problem.  Absent a
detailed, line-by-line description of the model, all the input data,
parameter values, and constituent equations described as part of a
publication it is simply not possible to reproduce, confirm, or
meaningfully challenge the results presented.  (Citations of previously
published work may serve to mitigate this problem, at least in part,
and this will be elaborated in a later section of this chapter.)   

4.3 Peer review of models within EPA

The Agency's Task Force on Environmental Regulatory Modeling (EPA,
1993) has recently identified external peer review as an essential
phase of model development, modeling applications, and use of models in
the decision-making process.  The report outlines a developing policy
on these matters and suggests specific procedural steps intended to
assist Agency program managers in conducting such reviews. Apparently,
one motivation for the Task Force effort is the present lack of uniform
and consistent practice in this area.  The essential point of the
report is that an external review is required in order to ensure an
independent review.  Our perspective is that external peer review as
described by the Task Force report is in use to varying degrees within
EPA and should be encouraged.

4.4 Peer review as part of model validation: a three-fold          
strategy

Chapter three of this report lays out the procedures and methods for
validating models.  Peer reviews are important components of the
"weight of evidence" to be assembled in that process.  The limitations
and inherent difficulties presented by traditional peer review have
been examined; a particularly articulate critique of peer review of
complex models was noted.  A three-fold strategy emerges as described
below to improve modeling peer review.

(i) Reference code, version documentation, and test data set
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maintenance.  The difficulties in not knowing all the information
required to reproduce results completed by others and published
in various forms can be alleviated by having an "original"
version (or extended versions) of the model resident in an
organization that can maintain and distribute unaltered,
reference copies to anyone who needs them.  Once established,
this system would enable citations in published documents that,
in principle, permit reviewers to reconstruct the exact model
that was used, modified, or discussed in the document. 
Similarly, a standard test data set enables a convenient way to
verify any given code.

(ii) Publication in referred journals.  Publication of modeling
refinements, performance testing, applications, and solution
techniques should continue.  As an ongoing process, such peer
review adds substantially to the weight of evidence that the
model is reliable for the circumstances described.  This process
is strengthened by the availability of the reference codes as
described above.

(iii) Periodic or issue-specific group peer reviews.  As models
have become increasingly complex and aggregate science across
more than one discipline, it is increasingly clear that more than
one subject matter expert is required to provide adequate
scientific review.  Accordingly, group reviews are needed.  This
comports with recommendations of the Task Force on Regulatory
modeling. 

 

5 CONCLUSIONS

It is not reasonable to equate the validity of a model with its ability
to predict correctly the future "true" behavior of the system. A
judgement about the validity of a model is a judgement on whether the
model can perform its designated task reliably, i.e., at minimum risk
of an undesirable outcome. It follows that whomsoever requires such a
judgement must be in a position to define -- in sufficient detail --
both the task and the undesirable outcome.

However desirable might be the application of "objective" tests of the
correspondence between the behavior of the model and the observed
behavior of the system, their results establish the reliability of the
model only inasmuch as the "past observations" can be equated with the
"current task specification". No-one, to the best of our knowledge, has
yet developed a quantitative method of adjusting the resulting test
statistics to compensate for the degree to which the "current task
specification" is believed to diverge from the "past observations".

This in no way denies, however, the value of these quantitative,
objective tests wherever they are applicable, i.e., in what might be
called "data-rich" problem situations. Indeed, there is the prospect
that in due course comparable, quantitative measures of performance
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validity can be developed for the substantially more difficult (and
arguably more critical) "data-poor" situations, in which predictions of
behavior under quite novel conditions are required by the task
specification.

In this concluding section, the purpose of the protocol for model
validation set out below is to provide a consistent basis on which to
conduct the debate, where necessary, on the validity of the model in
performing its designated task reliably. It seeks not to define what
will constitute a valid model in any given situation, but to establish
the framework within which the process of arriving at such a judgement
can be conducted. It acknowledges that no evidence in such matters is
above dispute, not even the evidence of "objective" measures of
performance validity, which themselves must depend on some subjectively
chosen level of an acceptable (unacceptable) difference between a pair
of numbers.

5.1 The Protocol

There are three aspects to forming a judgement on the validity, or
otherwise, of a model for predictive exposure assessments:

(i) the nature of the predictive task to be performed;

(ii) the properties of the model; and

(iii) the magnitude of the risk of making a wrong
decision.

For example, if the task is identical to one already studied with the
same model as proposed for the present task and the risk of making a
wrong decision is low, the process of coming to a judgement on the
validity of the model ought to be relatively straightforward and brief.
Ideally, it would be facilitated by readily available, quantitative
evidence of model performance validity. At the other extreme, if the
task is an entirely novel one, for which a novel form of model has been
proposed, and the risk of making a wrong decision is high, it would be
much more difficult to come to a judgement on the validity of the
model. Evidence on which to base this judgement would tend to be
primarily that of an expert opinion, and therefore largely of a
qualitative nature.

While the depth of the enquiry and length of the process in coming to a
judgement would differ in these two examples, much the same forms of
evidence would need to be gathered and presented. It is important,
however, to establish responsibilities for the gathering of such
evidence, for only a part of it rests with the agency charged with the
development of a model. In the following it has been assumed that a
second, independent agency would be responsible for specification of
the task and evaluation of the risk of making a wrong decision. The
focus of the protocol will accordingly be on the forms of evidence



33

required for evaluation of the model.

5.1.1 Examination of the model's composition

The composition of a model embraces several attributes on which
evidence will need to be presented. These are as follows:

(i) Structure. The structure of the model is expressed by the
assembly of constituent process mechanisms (or hypotheses)
incorporated in the model. A constituent mechanism might
be defined as "dispersion", for example, or as "predation
of one species of organism by another". The need is to
know the extent to which each such constituent mechanism
has been used before in any previous (other) model or
previous version of the given model. There might also be a
need to know the relative distribution of physical,
chemical and biological mechanisms so incorporated; many
scientists would attach the greatest probability of
universal applicability to a physical mechanism, and the
smallest such probability to a biological mechanism.

(ii) Mathematical expression of constituent hypotheses. This
is a more refined aspect of model structure. The
mechanism of "bacterial degradation of a pollutant" can
be represented mathematically in a variety of ways: as a
first-order chemical kinetic expression, in which the
rate of degradation is proportional to the concentration
of the pollutant; or as, for instance, a function of the
metabolism of bacteria growing according to a Monod
kinetic expression.

(iii) Number of state variables. In most models of
predictive exposure assessments the state variables
will be defined as the concentrations of
contaminants or biomass of organisms at various
locations across the system of interest. The greater
the number of state variables included in the model
the less will be the degree of aggregation and
approximation in simulating both the spatial and
microbial (ecological) variability in the system's
behavior. In the preceding example of "bacterial
degradation of a pollutant", only a single state
variable would be needed to characterize the
approximation of first-order chemical kinetics; two
-- one each for the concentrations of both the
pollutant and the (assumed) single biomass of
bacteria -- would be required for the constituent
hypothesis of Monod kinetics. Similarly, a lake
characterized as a single, homogeneous volume of
water will require just one state variable for the
description of pollutant concentration within such a
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system. Were the lake to be characterized as two
sub-volumes (a hypolimnion and an epilimnion),
however, two state variables would be needed to
represent the resulting spatial variability of
pollutant concentration.

(iv) Number of parameters. The model's parameters are the
coefficients that appear in the mathematical expressions
representing the constituent mechanisms as a function of
the values of the state variables (and/or input
variables). They are quantities such as a dispersion
coefficient, a first-order decay-rate constant, or a
maximum specific growth-rate constant. In an ideal world
all the model's parameters could be assumed to be
invariant with space and time. Yet they are in truth
aggregate approximations of quantities that will vary at
some finer scale of resolution than catered for by the
given model. For instance, the first-order decay-rate
constant of pollutant degradation subsumes the behavior
of a population of bacteria; a Monod half-saturation
concentration may subsume the more refined mechanism of
substrate inhibition of metabolism, and so on. In
problems of groundwater contamination the volumes (areas)
over which the parameters of the soil properties are
assumed to be uniform are intertwined with this same
problem of aggregation versus refinement. There is
immense difficulty, however (as already noted in
discussion of the concept of articulation), in
establishing whether a model has the correct degree of
complexity for its intended task.

(v) Values of parameters. Again, in an ideal world the values
to be assigned to the model's parameters would be
invariant and universally applicable whatever the specific
sector of the environment for which a predictive exposure
assessment is required. In practice there will merely be
successively less good approximations to this ideal,
roughly in the following descending order:

(a) The parameter is associated with an (essentially)
immutable law of physics and can accordingly be
assigned a single, equally immutable, value;

(b) The parameter has been determined from a laboratory
experiment designed to assess a single constituent
mechanism, such as pollutant biodegradation, under
the assumption that no other mechanisms are acting
upon the destruction, transformation, or
redistribution of the pollutant within the
experiment;

(c) The parameter has been determined by calibration of
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the model with a set of observations of the field
system;

(d) A value has been assigned to the parameter on the
basis of values quoted in the literature from the
application of models incorporating the same
mathematical expression of the same constituent
process mechanism.

It is misleading to suppose that the result of (b) will be
independent of an assumed model of the behavior observed
in the laboratory experiment. The coefficient itself is
not observed. Instead, for example, the concentration of
pollutant remaining undegraded in the laboratory beaker or
chemostat is observed. Once a mathematical description of
the mechanism assumed to be operative in the experiment is
postulated, then the value of the parameter can be
inferred from matching the performance of this model with
the observations (which in effect is the same procedure as
that of (c)).

(vi) Parameter uncertainty. Evidence should be presented on
the range of values assigned to a particular parameter in
past studies and/or on the magnitude and (where
available) statistical properties of the estimation
errors associated with these values. In many cases it
might be sufficient to assume that such ranges of values
and distributions of errors are statistically independent
of each other, but this can be misleading. Supplementary
evidence of the absence/presence of correlation among the
parameter estimates and errors could be both desirable
and material to the judgement on model validity. For
example, unless determined strictly independently -- and
it is not easy to see how that might be achieved -- the
values quoted for a bacterial growth-rate constant and
death-rate constant are likely to be correlated. A pair
of low values for both parameters can give the same net
rate of growth as a pair of high values, and knowledge of
such correlation can influence both the computation of,
and assessment of, the uncertainty attaching to a
prediction of future behavior.

(vii) Analysis of parameter sensitivity. The extent to
which the predictions of the model will change as a
result of alternative assumptions about the values
of the constituent parameters can be established
from an analysis of parameter sensitivity. On its
own such information provides only a weak index of
model validity. It may be used, nevertheless, to
supplement a judgement on the model's compositional
validity based on the foregoing categories of
evidence. In the absence of any knowledge of
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parameter uncertainty an analysis of sensitivity may
yield insight into the validity of the model's
composition through the identification, in extreme
cases, of those "infeasible" values of the
parameters that lead to unstable or absurd
predictions. It could be used thus to establish in
crude terms the domain of applicability of the
model, i.e., ranges of values for the model's
parameters for which "sensible" behavior of the
model is guaranteed. In the presence of information
on parameter uncertainty an analysis of sensitivity
may enable rather more refined conclusions about the
validity of the model. In particular, a highly
sensitive, but highly uncertain, parameter is
suggestive of an ill-composed model.

It is clearly impossible to divorce an assessment of the evidence on
the model's compositional validity -- its intrinsic properties and
attributes -- from the current task specification. In particular, the
less immutable the hypothesis (law) incorporating a given parameter is
believed to be, the more relevant will become a judgement about the
degree to which the current task specification deviates from those
under which the values previously quoted for this parameter were
derived. Such judgement will be especially difficult to make in the
case of quantifying the correspondence (or divergence) between the
laboratory conditions used to determine a rate constant and the field
conditions for which a predictive exposure assessment is required. The
judgement, nevertherless, is directed at the internal composition of
the model, albeit conditioned upon the degree of similarity between the
current and previous task definitions.

5.1.2 Examination of the model's performance

Evidence must also be assembled from the results of tests of a model's
performance against an external reference definition of the prototype
(field) system's behavior. This will have various levels of refinement,
approximately in the following ascending order.

(i) Unpaired tests. In these the coincidence between values
for the model's state variables and values observed for
corresponding variables of the prototype system at
identical points in time and space is of no consequence.
It is sufficient merely for certain aggregate measures of
the collection of model predictions and the collection of
field data to be judged to be coincident. For example, it
might be required that the mean of the computed
concentrations of a contaminant in a representative
(model) pond over an annual cycle is the same as the mean
of a set of observed values sampled on a casual, irregular
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basis from several ponds in a geologically homogeneous
region. Within such unpaired tests, there are further,
subsidiary levels of refinement. A match of mean values
alone is less reassuring than a match of both the means
and variances, which is itself a less incisive test than
establishing the similarity between the two entire
distributions.

(ii) Paired tests. For these it is of central concern that the
predictions from the model match the observed values at
the same points in time and space. Again, as with the
unpaired tests, subsidiary levels of refinement are
possible, in providing an increasingly comprehensive
collection of statistical properties for the errors of
mismatch so determined.

(iii) Sequence of errors. A paired-sample test, as defined
above, makes no reference to the pattern of the
errors of mismatch as they occur in sequence from
one point in time (or space) to the next. When
sufficient observations are available a test of the
temporal (or spatial) correlations in the error
sequences may yield strong evidence with which to
establish the performance validity of the model. In
this case a "sufficiency" of data implies
observations of the contaminant concentration at
frequent, regular intervals over relatively long,
unbroken periods.

In much the same way as it is not possible to divorce an assessment of
the compositional validity of a model from its current and past task
specifications, so it is not possible to divorce an assessment of
performance validity from the composition of the model. Thus a further
two categories of evidence are relevant.

(iv) Calibration. The task of model calibration necessarily
involves adjustment and adaptation of the model's
composition. The extent to which the values of the
model's parameters have thereby been altered in order for
the model to fit the calibration data set may render
inadmissible the use of any associated error statistics
for the purposes of judging model validity. It is
therefore especially relevant for evidence of this form
to be declared.

(v) Prediction uncertainty. All models may be subjected to an
analysis of the uncertainty attaching to their
predictions. Such an analysis will depend on the
composition of the model -- through the quantification of
parameter uncertainty; and it will depend upon the task
specification, through a statement of the scenarios for
the input disturbances and initial state of the system,



38

i.e., the boundary and initial conditions for the solution
of the model equations. The fact that the ambient
concentration of the contaminant cannot be predicted with
sufficient confidence does not necessarily signify an
invalid model, however. For there are three sources of
uncertainty in the predictions, two of which (the initial
and boundary conditions) are independent of the model.
Good practice in the analysis of prediction uncertainty
(if a judgement on model validity is the objective) should
therefore include some form of ranking of the
contributions each source of uncertainty makes to the
overall uncertainty of the prediction. Where Monte Carlo
simulation is used to compute the distributions of the
uncertain predictions, some -- perhaps many -- runs of the
model may fail to be completed because of combinations of
the model's parameter values leading to unstable or absurd
output responses. As with an analysis of sensitivity, this
provides useful information about the robustness of the
model and restrictions on its domain of applicability. The
less the model is found to be restricted, so the greater
is the belief in its validity. In some cases, it may be
feasible and desirable to state the output responses
expected of the model in order for the task specification
to be met, thus enabling a more refined assessment of the
domain of applicability of the model (as in discussion of
the concept of relevance). The use of combinations of
parameter values leading to unacceptable deviations from
the behavior of the task specification can be placed under
restrictions.

5.1.3 Task specification

Judgements on both the compositional and performance validity of the
model are inextricably linked with an assessment of the extent to which
the current task specification diverges from the task specifications of
previous applications of the model. Categories of evidence relating to
the fundamental properties of the task specification must therefore be
defined, in a manner similar to those assembled in order to conduct an
assessment of the model.

For example, a model used previously for prediction of a chronic
exposure at a single site with homogeneous environmental properties may
well not be valid -- in terms of performing its task reliably -- for
the prediction of an acute exposure at several sites with highly
heterogeneous properties. It is not that the model is inherently
incapable of making such predictions, but that there is an element of
extrapolation into novel conditions implied by the different task
specification. It is not the purpose of this document, however, to
provide anything other than a very preliminary indication of the
categories of evidence required to assess the degree of difference
between current and past task specifications, as follows.
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(i) The contaminants. The class(es) of chemicals into which
the contaminant would most probably fall, such as
chlorinated hydrocarbon, or aromatic compound, for
example, must be specified. The number of such chemicals
to be released, and their interactions (synergism,
antagonism, and so on) vis a vis the state variables of
interest in the environment, must also be specified.

(ii) The environment. Several attributes can be employed to
characterize the similarities and differences among the
environments into which the contaminant is to be
released. These include, inter alia, the geological,
hydrological, and ecological properties of the sites of
interest, together with statements of the homogeneity, or
heterogeneity, of the site according to these attributes.

(iii) Target organism, or organ.

(iv) Nature of exposure. The obvious distinction to be made in
this case is between acute and chronic exposures of the
target organism to the contaminant.
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APPENDIX

ROLE OF STATISTICAL MEASURES AND METHODS

In order for the presentation of the applicable methods and statistical
measures of validation to be as clear as possible it is necessary to
introduce here some mathematical statements of the model and the terms
and variables associated with it.

1 Preliminaries

Let us assume therefore that the model quantifies the unsteady-state,
i.e., dynamic, behavior of the environment into which contaminants
might be released as the following set of state-space, ordinary
differential equations

(1)

associated with which (error-corrupted) observations at discrete
instants tk of the outputs y may be available

(2)

Here x is the vector of state variables (typically, the concentrations
of the contaminant at various points in space), u is a vector of input
disturbances of the system (typically, such as precipitation, solar
radiation, or the rate of release of the contaminant, for example, from
a landfill site), "" is the vector of model parameters (constants or
coefficients, such as a growth-rate parameter, or volatilization rate
constant), y the set of observed values of the state variables, >> a
vector of unknown, random disturbances of the states of the system, and
00 is a vector of measurement errors associated with the observation y.
The dot notation in x00 equation (1) denotes differentiation with
respect to time t, and tk in equation (2) signifies the pragmatic
restriction of the observations to discrete instants (k) in time. It is
highly unlikely that strictly continuous records of the movement of a
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contaminant through an environment would be available in practice.

The behavior of the system is observed through its input perturbations
(u) and its output responses (y). These "observational facts", or data
[u,y], may be referred to as the external description of the system's
behavior. The prior constituent hypotheses about the mechanisms
believed to govern this behavior are composed as the model in terms of
its state variables (x) and the parameters ("") that appear in the
relationships among u, x, and y. Collectively [x,""] may be referred to
as the internal description of the system's behavior; they reflect the
nature of the (hypothetical) internal workings of the system.

The observed facts [u,y] are both subject to errors, although equations
(1) and (2) above acknowledge formally and explicitly the errors
associated only with the observations of the outputs, i.e., 00. Any
errors attaching to u may therefore be assumed to be implicit, in
effect, in the definition of >>. Given [u,y] over a period of time (t0
# t # tN) for calibration purposes, the data for u are inserted in
sequence into the model such that an estimate íí of the observations y
can be generated at each measurement instant tk, where íí is given by

(3)

in which x(tk) is derived from the integration of equation (1) as

(4)

Equation (4) will require an evaluation of the initial state of the
system x0 at time t = t0, and both equations (3) and (4) will require
knowledge of the parameter values, i.e., the estimates "". Since
neither >> nor 00 can be known, they do not appear in equations (3) and
(4). (Their presence in equations (1) and (2) signals merely that they
are present in reality, and must therefore enter into a judgement about
the validity of the model).

Strictly speaking, the measure of agreement required for assessing the
performance validity of the model can only be computed in terms of the
external description of the system, i.e., in the context of that which
can be observed. Invariably this implies agreement in terms of the
output, i.e., y and íí (from equations (2) and (3) respectively), so
that the mismatch between the behavior of the model and behavior of the
system is gauged by the error e, where
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(5)

Frequently, the relationship between the state variables x and the
outputs y, as characterized by the function h{@} in equation (2), will
be straightforwardly such that the outputs are simply error-corrupted
observations of the states, i.e.,

(6)

in which case íí is identical with x.

The relevant methods of assessment can now be introduced in the order
of the procedure set out in Section 3.1 above, i.e., model development,
prior performance validity, and analysis of uncertainty, where this
last includes the analysis of sensitivity and subsumes the quantitative
evaluation of compositional validity.

2 Model development: posterior performance validity

For all practical purposes conventional tests on the performance
validity of the model (both prior and posterior) are conducted on the
basis of the numbers available for the quantities  y(tk), íí(tk), and
e(tk). However incomplete such tests may be, as we have argued above in
Chapter 2, they are by and large the only quantitative measures upon
which to base a decision about the model's validity.

The details of these tests will be discussed fully under the principal
heading of prior performance validity below. The point requiring
emphasis here is elaboration of the way in which a test result deriving
from the process of calibration during model development, denoting thus
posterior performance validity, is a more or less weak approximation of
the all-important property of prior performance validity.

Let us suppose that when the model is first confronted with the
observed data [y] -- for calibration purposes -- a set of values ""0 are
substituted for the parameters. Under this substitution the model
generates estimates of the outputs, i.e., íí, which we may denote more
precisely as íí{""0;tk}, and from which in turn values of the errors
e{""0;tk} can be obtained. According to the nature of these errors,
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adjustments are made to the values of the parameters used in the model,
for example, a change from ""0 to ""1, with ""1 then being substituted in
a second trial attempt at matching the model with the observations. The
process of adjustment may be repeated many times, leading ultimately to
a set of parameter values ""M that reflects the conclusion of M
successive attempts at matching íí with y.

Progress in moving from ""0 to ""M, and by association, success in
calibration, are gauged by the extent to which the errors e{""M;tk} are
in some quantitative sense "smaller" than e{""0;tk}. At the extreme, if
e{""0;tk} is judged sufficiently small at the first (and only) attempt,
then the statistical properties of this set of errors can be used as a
measure, in effect, of prior performance validity. The qualification of
"prior" signifies the performance validity of the model, for the
specific, given data set, prior to any adjustments of the model's
parameter values. In the vast majority of cases such good fortune is
unlikely to obtain, and the statistics of the errors will essentially
refer to a measure of the posterior performance validity of the model,
after changes to the parameters values have been made on the basis of
the test observation set. The extent to which in subsequent trials
changes to ""i, as a result of mismatches between the model and
observations, cause e{""i;tk} to differ from e{""0;tk}, will leave the
concluding error characteristics e{""M;tk} progressively weaker
approximations of the desired prior performance validity.

3 Prior performance validity

The raw "data" for the test of prior performance validity consist of
the sequences of [y(tk)], [íí{""0;tk}], and [e{""0;tk}], where the argument
""0 signals as before that no adjustments have been made to the values
of the model's parameters on the basis of interpretation of the test
observation set, and the notation [@] signifies a sequence covering
(N+1) instants in time from t0 to tN. It might be the case that simple
visual inspection of these sequences would be sufficient for an expert
judgement on the prior performance validity of the model; but this is
not the subject of the present discussion (see Chapter 4).

The summarizing "properties" of these data, which are to be computed to
assist in the assessment, are expressed, inter alia, as:

(i) a distribution function, i.e., the frequency with which
certain values of a variable, e.g., y, are found to occur;

(ii) the moments of this distribution function, almost always,
its mean and variance statistics;

(iii) the degree to which a pair of quantities are correlated, as
measured by the coefficients appearing in a linear
regression relationship between y(tk) and í(tk);

(iv) the degree to which the value of a variable at one instant



44

in time, e(tl), is correlated with its value at another
instant, e(tm), as measured by the auto-covariances, or
auto-correlation coefficients; and

(v) the degree to which a pair of quantities -- typically y(tl)
and í(tm) -- are correlated, as measured correspondingly by
the cross-covariances, or cross-correlation coefficients.

Their purpose is compression of the properties of [y(tk)], [íí{""0;tk}],
and [e{""0;tk}] into a single numerical value, in the same way that
visual identification by the expert of a (single) pattern in the
sequence e(tk) will allow that expert to come to a judgement on the
validity of the model. The crucial difference, however, is that these
summary properties are arrived at in an objective, expert-independent
fashion. Their computation and use are governed in part by the volume
and quality of the available data; increasingly more and better quality
data will in general be required as one progresses from property (i)
through to property (v).

Such summary properties have two distinctive attributes: they may be
based on paired or unpaired sets of data; and they may, or may not, be
based also on treatment of the data in sequence. These attributes
capture increasingly more detailed aspects of the match between the
outputs of the model and the corresponding observed quantities. Thus:

(i) Properties based on unpaired sets of data, such as the mean
and variance of the cumulative distribution functions for
[y(tk)] and [íí{""0;tk}], overlook entirely the
contemporaneous variations in these quantities. It matters
only that the observed and simulated behavior occupy --
collectively -- the same portion of the output "space"; it
matters not that they may, or may not, be in the same
"locality" at the same time. For instance, [y(tk)] and
[íí{""0;tk}] could have in summary essentially identical mean
values and variances, yet the maximum value of y(tk) could
be observed to occur at the same time as the minimum value
of í(tk).

(ii) Properties based on treatment of the data in sequence, such
as the auto-correlation function of [e{""0;tk}] and the
cross-correlation function for [y(tk)] and [íí{""0;tk}], must
also be based on paired sets of data. They encapsulate the
tendency for the mismatch between observed and computed
behavior to be persistently one of under- or over-estimation
(at one instant in time after another) or, conversely,
consistently random in time with no detectable pattern.

Both of these properties are quantitative measures of patterns
relatively easily detectable by eye.

There are also minor variations on the basic theme of some of these
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properties, for example, in the computation of a normalized (or
relative) mean error defined as

(7)

in which e)i is the mean of the errors between yi and íi and y)i is the
mean value of the observations yi. As with any procedure of
normalization, computing relative error properties permits inter-
comparison of the performance validity of the model across individual
output variables yi that may have quite different characteristic
numerical scales.

Taken together, the raw "data" and summarizing "properties" listed
above provide information with which a "decision" can be made. This
"decision" is simply the judgement on whether to accept or reject the
model as a valid instrument of prediction. And like all decisions, it
would be best made in the light of as much relevant information as
possible, and will be subject to a particular decision rule, or
perspective of the decision-maker.

These generic properties of decision analysis devolve down to the
procedures of statistical hypothesis testing (as admirably demonstrated
by Reckhow et al, 1990):

(i) The decision is tantamount to answering the question of
whether y is the same as íí (or alternatively whether e is
zero);

(ii) The perspective of the decision-maker is determined by his
or her stance as a model developer vis a vis a model user
(as already discussed in respect of the work of Burns et al,
1990);

(iii) A risk must be specified for the making of a wrong decision
-- from either of the two perspectives of (ii) above, and
where (presumably) the decision-maker could be risk-averse,
risk-neutral, or risk-prone in his or her preferences for
the weighting of the costs and benefits of the outcome of
the decision.

There can be minor variations on the theme of what constitutes
"similarity" (or "sameness") in the question of (i), and an array of
"statistics" can be computed for comparison with standard values of
these statistics in order to establish whether similarity, or
conversely dissimilarity, can be said to hold -- at a chosen level of
risk (iii) from a chosen perspective (ii).
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